Literaturverzeichnis

1. Vighi, G., Marcucci, F., Sensi, L., Di Cara, G. & Frati, F. Allergy and the gastrointestinal system. Clin Exp Immunol 153, 3–6 (2008).
2. Brandtzaeg, P. et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97, 1562–84 (1989).
3. Tap, J. et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152, 111-123.e8 (2017).
4. Wang, L. et al. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet 120, 565–586 (2020).
5. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun 8, 1784 (2017).
6. Layer, P. et al. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM). Z Gastroenterol 59, 1323–1415 (2021).
7. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339-1353.e21 (2016).
8. Parrish, A., Boudaud, M., Kuehn, A., Ollert, M. & Desai, M. S. Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends in Molecular Medicine vol. 28 36–50.
9. Parrish, A. et al. Akkermansia muciniphila exacerbates food allergy in fibre-deprived mice. Nat Microbiol 8, 1863–1879 (2023).
10. Drago, S. et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41, 408–419 (2006).
11. Poto, R. et al. The role of gut microbiota and leaky gut in the pathogenesis of food allergy. Nutrients vol. 16.
12. Siddiqui, I., Majid, H. & Abid, S. Update on clinical and research application of fecal biomarkers for gastrointestinal diseases. World J Gastrointest Pharmacol Ther 8, 39 (2017).
13. Vazquez–Roque, M. I. et al. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: effects on bowel frequency and intestinal function. Gastroenterology 144, 903-911.e3 (2013).
14. Barmeyer, C. et al. Long-term response to gluten-free diet as evidence for non-celiac wheat sensitivity in one third of patients with diarrhea-dominant and mixed-type irritable bowel syndrome. Int J Colorectal Dis 32, 29–39 (2017).
15. Pinto-Sanchez, M. I. et al. Gluten-free diet reduces symptoms, particularly diarrhea, in patients with irritable bowel syndrome and antigliadin IgG. Clinical Gastroenterology and Hepatology 19, 2343-2352.e8 (2021).
16. Zanwar, V. G. et al. Symptomatic improvement with gluten restriction in irritable bowel syndrome: a prospective, randomized, double blinded placebo controlled trial. Intest Res 14, 343–350 (2016).
17. Barone, M. et al. Evaluation of non-celiac gluten sensitivity in patients with previous diagnosis of irritable bowel syndrome: a randomized double-blind placebo-controlled crossover trial. Nutrients 12, (2020).
18. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell vol. 165 1332–1345.
19. Peng, L., Li, Z.-R., Green, R. S., Holzmanr, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers. J Nutr 139, 1619–1625 (2009).
20. Hatayama, H., Iwashita, J., Kuwajima, A. & Abe, T. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun 356, 599–603 (2007).
21. Martens, E. et al. Unravelling specific diet and gut microbial contributions to inflammatory bowel disease. Research Square - Preprint (2023) doi:10.21203/rs.3.rs-2518251/v1.
22. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137-4153.e14 (2021).
23. Cuadrado, C. et al. Effect of natural fermentation on the lectin of lentils measured by immunological methods. Food Agric Immunol 14, 41–49 (2002).
24. Gupta, R. K., Gangoliya, S. S. & Singh, N. K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. vol. 52 676–684
25. Hole, A. S. et al. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem 60, 6369–6375 (2012).
26. Nkhata, S. G., Ayua, E., Kamau, E. H. & Shingiro, J. B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food sci. nutr. vol. 6 2446–2458
27. Bermudez-Brito et al.: Probiotic mechanisms of action; Ann Nutr Metab, 2012; 61(2): 160–174
28. Shin, W. & Kim, H. J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci 115, E10539–E10547 (2018).
29. Zhang, B. et al. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chinese Medical Journal vol. 136 1390–1400
30. Magge, S., & Lembo, A. (2012). Low-FODMAP diet for treatment of irritable bowel syndrome. Gastroenterology & hepatology, 8(11), 739
31. Garcia K, Ferreira G, Reis F, Viana S. 2022. Impact of dietary sugars on gut microbiota and metabolic health. Diabetol. MDPI https://doi.org/10.3390/diabetology3040042
32. Song G, Gan Q, Qi W, Wang Y, Xu M, Li Y. 2023. Fructose stimulated colonic arginine and proline metabolism dysbiosis, altered microbiota and aggravated intestinal barrier dysfunction in DSS-induced colitis rats. Nutrients 15
33. Khan S, Waliullah S, Godfrey V, Khan MAW, Ramachandran RA, Cantarel BL, Behrendt C, Peng L, Hooper L V, Zaki H. 2020. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med 12:eaay6218
34. Burr AHP, Ji J, Ozler K, Mentrup HL, Eskiocak O, Yueh B, Cumberland R, Menk A V, Rittenhouse N, Marshall CW, Chiaranunt P, Zhang X, Mullinax L, Overacre-Delgoffe A, Cooper VS, Poholek AC, Delgoffe GM, Mollen KP, Beyaz S, Hand TW. 2023. Excess dietary sugar alters colonocyte metabolism and impairs the proliferative response to damage. Cell Mol Gastroenterol Hepatol 16:287–316.
35. Urade, R., Sato, N. & Sugiyama, M. Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates. Biophys Rev 10, 435–443 (2018).
36. Willoughby, D. S. The role of the gluten-derived peptide gliadin in celiac disease. J. nutri. health food eng. 1, (2014).
37. Madeo, F., Eisenberg, T., Pietrocola, F., & Kroemer, G. (2018). Spermidine in health and disease. Science, 359(6374), eaan2788.
38. Leeuwendaal, N. K., Stanton, C., O’toole, P. W., & Beresford, T. P. (2022). Fermented foods, health and the gut microbiome. Nutrients, 14(7), 1527.
39. Knez et al.: Effect of fermentation on the nutritional quality of the selected vegetables and legumes and their health effects, Life. MDPI, 2023
40. Salvi et al.: Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease; Cells, 2021; MDPI
41. Sasaki, H. et al. Combinatorial effects of soluble, insoluble, and organic extracts from jerusalem artichokes on gut microbiota in mice. Microorganisms 8, 1–19 (2020).
42. Cherbut et al.: Acacia gum is a bifidogenic dietary fibre with high digestive tolerance in healthy humans; Microb Ecol Heath Dis, 2003; 15:43–50
43. González-Bermúdez et al.: Effects of different thickening agents on infant gut microbiota; Food Funct, 2018; 9 (3): 1768–1778
44. Costabile et al.: A double-blind, placebo-controlled, cross-over study to stablish the bifidogenic effect of a very-long-chain inulin extracted from globe Artichoke (Cynara scolymus) in heathy human subjects; Br J Nutr, 2010; 104(7): 1007–1017
45. Topping et al.: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides; Physiol Rev, 2001; 81:1031–1064
46. Sánchez, M., González-Burgos, E., Iglesias, I. & Gómez-Serranillos, M. P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules vol. 25
47. Langmead, L. et al. Randomized, double-blind, placebo-controlled trial of oral Aloe vera gel for active ulcerative colitis. Aliment Pharmacol Ther 19, 739–747 (2004).
48. Gullón et al.: In vitro assessment of the prebiotic potential of Aloe vera mucilage and its impact on the human microbiota; Food Funct, 2015; 6: 525–531
49. Quezada, M. P., Salinas, C., Gotteland, M. & Cardemil, L. Acemannan and fructans from Aloe vera (Aloe barbadensis Miller) plants as novel prebiotics. J Agric Food Chem 65, 10029–10039 (2017).
50. Hong et al.: Aloe vera is effective and safe in short-term treatment of irritable bowel syndrome: a systematic review and meta-analysis; J Neurogastroenterol Motil, 2008; 24(4):528–535
51. Baxter et al.: Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers; mBio, 2019; 10(1): 10.1128.
52. Varvara, R.-A. and Vodnar, D.C.: Probiotic-driven advancement: exploring the intricacies of mineral absorption in the human body; Food Chem: X, 2024; 21: 101067.